# **Temperature Humidity Sensor**

**OMC-406** 

**Users Manual** Version no. 1.05 2016

**OBSERVATOR** instruments B.V.

Postbus 60 2980 AB Ridderkerk Rietdekkerstraat 6

Tel. ++31 (0)180 463411 Telefax ++31 (0)180 463510 Nederland



# Contents

| 1. Introduction 1.1 Technical description 1.2 Specification Humidity measurement 1.3 Specification Temperature measurement 1.4 General information | 2 2 2 2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 2. Operation                                                                                                                                       | 3       |
| 3. Measurement practices                                                                                                                           | 4       |
| 4. Measurement in gases                                                                                                                            | 5       |
| 5. Calibration                                                                                                                                     | 5       |
| 6. Connections                                                                                                                                     | 6       |



\_\_\_\_\_

## 1. Introduction

The air temperature and hum idity probe OM C-406 provides accurate and prec ise measurements of humidity and temperature. A dvancements in sensor and integrated circuit technology has made it possible to achieve outstanding performance from a hand-held probe. Through the use of the probe and by proper application of basic procedures when obtaining humidity measurements the date will be reliable and dependable.

#### 1.1 Technical description

The humidity s ensor us ed in the OM C-406 is a solid state device which changes it selectrical characteristics at extremely small changes in humidity. These changes are detected, linearized and amplified as an analog-output by unique electronic circuitry specifically designed for maximum performance. The temperature sensing system also uses integrated circuit technology in combination with an accurate temperature element (PT-100) to produce high quality data.

#### 1.2 Specification Humidity measurement

| Measuring  | ange | LO 100 %RH Linear      |
|------------|------|------------------------|
| Micasainig | ungo | O 100 /or tri Elifotai |

Temperature Error .... | ± 05 %RH/70 deg.C (complete probe)

#### 1.3 Specification Temperature measurement

Sensing dement | RTD Pt-100 Ohm

Measuring Range | -40...+60 deg. C, linear

Accuracy . . . . . | <± 0.5 deg.C from - 30 to...150 deg.C

Temperature Error | ±0,35 deg.C / 70 deg.C

Calibration Points . . . . . | Tmin and Tmax

#### 1.4 General information

Power supply . . . . . . . . | 8..26.5 VDC, 50 mA Max.

Operating Temp. electronics . . . . | -40...+60 deg.C Protection of the Sensors . . . . | Wire mess Filter

Dimensions . . . . . | Length 265 mm, Diameter 25 mm

Weight .... 100 g

Calibration devices . . . . | EM-25 Humidity Standards . . . . | EA-20, 35, 50, 65, 80, 95 %RH

Technical modifications reserved.





\_\_\_\_\_

## 2. Operation

**ATTENTION:** Using a supply voltage other than the specified voltage and/or overloading the outputs may damage the instrument and result in erroneous readings.

Connect the probe with a 4 core cable to the DCU or any other device. The four core cable is used for supply (2 c ores) and t he signal I ines t emperature and hum idity. System is immediately ready for measurement.

#### 3. Measurement practices

The probes is carefully calibrated before delivery. Therefore is not necessary to check the calibration of new probe's. After switching-on the probe is ready. Accuracy and reliability of measurement depend on how well the sensing elements and the entire assembly are in equilibrium with the surrounding.

**ATTENTION:** Before a correct reading can be done, the probe and the medium to be measured must be at the same temperature and in equilibrium with the humidity. At 50% RH a temperature difference of 1 degree celsius results in an error of +/- 3% RH.

The time required for the sensing to get in equilibrium with the product to be measured can vary from 1 to 30 minutes depending on:

- difference in humidity and temperature between product and probe at the beginning
- 2 stability of the parameters during the adaption time
- 3 the speed at w hich w ater v apor c an be interchanged between sensing element and the ambient.

For accurate measurements following practices should be followed:

- 1 Keep the product and the probe in an area where there is no air draughts or heat ing/air condition cycling.
- Avoid having the product or probe in sunlight. This produces temperature variation, thereby infecting the humidity measurement.
- 3 Avoid making any measurements where there are water sprays, steam sprays, dripping water etc.
- 4 Do not use probes in dusty/dirty environments unless equipped with proper dust filters.
- 5 Never clean out the dust filter using pressurized air.
- Never place your hand directly over the sensing element to see response time and then place the probe in the product, expecting quick equilibrium. This practice produces a new condition for the probe and equilibrium can take longer.



\_\_\_\_\_

A displayed value above 100% (150% typical) may be an indication of or condensation in the sensing element and/or in the assembly. Condensation does not damage the probe and does not change the calibration. The probe can be restored by drying in a light airflow like 1m/sec. This drying period of 2-4 hours can be reduced by slightly heating the airflow up to 40 or 50 deg.C.

In presence of pollutants consult OBSERMET.

# 4. Measurement in gases

The probe OMC-406 is designed for measurement in gases. Because the heat transfer between gase s and solids is very slow the probe was designed with very little mass to speed up the time constant. The OMC-406 probe can be used in still or moving air. Adaption to the environment is 4 times faster in air with a movement of 1 m .sec. as opposed to a m easurement in still air. The sensor can operate satisfactorily in air movements up to 10 m /sec. As mentioned in item 6 of "measurement practices", never place your hand over the sensor. The sensors are fast responding units and the best manner to observe response is by placement into the product.

| 5. Calibration                                                                                        |
|-------------------------------------------------------------------------------------------------------|
| The OMC-406 probe is carefully calibrated prior to shipment. We recommend to recalibrate once a year. |
| Please contact our lab whenever recalibration is required.                                            |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |
|                                                                                                       |

|     | REVISION HISTORY |      |          |  |  |  |
|-----|------------------|------|----------|--|--|--|
| REV | DESCRIPTION      | DATE | APPROVED |  |  |  |
|     |                  |      |          |  |  |  |



| 1= Yellow | Powersupply –      |
|-----------|--------------------|
| 2= Green  | Powersupply +      |
| 3= Brown  | Temperature 4–20mA |
| 4= White  | Humidity 4-20mA    |
| 5= Black  | Shield             |

|                                                                                                                     | NAME      | DATE                                   |                        | 1.      |              |  |                   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------|----------------------------------------|------------------------|---------|--------------|--|-------------------|--|--|--|
| DRAWN                                                                                                               | E. Mourik | 5-2-2015                               | OBSERVATOR instruments |         |              |  | <b>OBSERVATOR</b> |  |  |  |
| CHECKED                                                                                                             | H. Ouadi  | 5-2-2015                               |                        |         |              |  |                   |  |  |  |
| ENG APPR                                                                                                            |           |                                        | Project:               |         |              |  |                   |  |  |  |
| MGR APPR                                                                                                            |           |                                        | Trojeci.               |         |              |  |                   |  |  |  |
| Observator Instruments<br>2984 BM Ridderkerk<br>The Netherlands<br>Email: info@observator.com<br>www.observator.com |           | SIZE DWG NO RE                         |                        |         | REV          |  |                   |  |  |  |
|                                                                                                                     |           | FILE NAME: OMC-406-422 Connections.dft |                        |         |              |  |                   |  |  |  |
|                                                                                                                     |           | SCALE                                  | ·<br>.:                | WEIGHT: | SHEET 1 OF 1 |  |                   |  |  |  |